MD5 Hashing Algorithm Collision Attack Lab Report

Hayden Eubanks
School of Business, Liberty University
CSIS 463-B01
Dr. De Queiroz

August 31, 2023

MD5 Hashing Algorithm Collision Attack Lab Report
Introduction:

Hash functions are an extremely useful form of cryptography that allows for the
mathematical validation of input data without revealing the underlying data that is being
validated (Microsoft, 2022). This feature can seek to provide data confidentiality and
integrity, but also non-repudiation as hashing can be implemented to validate
communications (Basta, 2018). Hashing algorithms are unique from other forms of
encryption in that the encryption performed is not reversible and the encrypted signature is
the element used for verification (Amazon, 2023). Further, hashing algorithms differ from
symmetric and asymmetric encryption by encrypting data into cyphertext values of fixed size
regardless of the input plaintext size (Long, 2019). While this feature is integral to the
functioning of hashing algorithms, it also leads to the potential for collisions where two
distinct input values map to the same hashed value (Shen et al., 2022). Several hashing
algorithms that were once widely used have now been deprecated due to their susceptibility
to collisions including the Message-Digest 5 (MD5) and the Secure Hash 1 (SHAL)
algorithms, and in this lab collision attacks on MD5 will be examined as it is especially
susceptible to collision attacks (Shen et al., 2022). Through exploring the vulnerabilities
present within MD5 a greater understanding of secure hashing algorithms can be achieved
and security professionals can be better equipped to mitigate vulnerabilities associated with
hashing functions.

The MD5 algorithm seeks to encrypt data through five data modification steps. These
steps include the padding of bits, appending the message length, initializing the message

digest buffer, processing the input data, and returning a hashed value (Mohammed Ali &

Kadhim Farhan, 2020). The tasks in this lab highlight the importance of the values associated
with the steps above and in doing so seeks to explore the effects of modifying the number of
bytes passed to the algorithm, the effect of varying message lengths, and the transformation
of the input data itself. This then extends to exploring the weaknesses of MD5 and gaining an
understanding of the risks of implementing it today. While MD5 has been deprecated for
modern use, exploring collisions within MD5 will allow a security professional to gain a
better understanding of the workings of hashing algorithms and better understand the risks
associated with weak implementations.

To accomplish this understanding, the lab begins by providing an introduction to the way
that MD5 processes data and the importance of processing block size in this process. With
this, the md5collgen function is used to generate two differing values that will form a
collision when hashed with MD5. The output values of this function are then examined on
the byte level and contrasted to gain insight into what data values change. This information is
then built upon to establish how this vulnerability in MD5 could lead to malicious code
passing as non-malicious code. After this, the lab practically establishes the fundamental
concept that appending the same value to two identically hashed values will maintain hash
congruency. This opens the possibility for examining code and modifying particular sections
so that the hash value remains the same despite the code being fundamentally altered.
Through these exercises, the lab seeks to highlight the importance of understanding
vulnerabilities associated with hashing algorithms, and a security professional could use this
knowledge to implement algorithms that minimize collisions and in doing so increase

security.

Lab Procedure:

To begin this lab, the md5collgen function must first be installed (Screenshotl) and
added to the system's executable files (Screenshot?) allowing the function to be used on the
system. This function is a collision generator for MD5 taking an input value and returning a
second output value that has the same MD5 hash signature but differing by several bytes
from the original message. While the md5collgen function is unique to the tests performed in
this lab, it aims to represent the potential for collisions, and the security implications of these
collisions are explored in later lab tasks.

With the prerequisite steps then accomplished, the lab work can begin by generating a
new prefix file (Screenshot3) and then passing this file to the md5collgen function to
generate a collision with this file. The diff function can be used to verify that differences
exist between the files (Screenshot5) but when the file hashes are checked with the md5sum
function (Screenshot6) it can be seen that the hash values are identical. This highlights the
problem at the core of the MD5 collision attack which is the ability for distinct values to hash
to the same hash sum (Obaida et al., 2022). As hash values are irreversible (Alenezi,
Alabdulrazzag, & Mohammad, 2020) there is then no way for an observer of the hash value
to identify which of the possible inputs for that hash value was passed to MD5. Further, and
most relevant for this lab, there is also no way to verify if two given hash values truly
originated from the same plaintext. This is a major security concern as it is then possible for
malicious code to hold the same hash signature as benign code (Mohammed Ali & Kadhim
Farhan, 2020). This can be verified in the lab by using the bless command to observe the
binary executable files generated by md5collgen (Screenshot7) and noting the differences

that exist between them (Screenshot8).

The first section of this lab then asks several questions and through exploring these
questions, a better understanding of MD5 can be obtained. The first of these questions
prompts the exploration of modifying the input file size to multiples of 64 bytes. MD5
processes data in 64-byte blocks (Alenezi et al., 2020) and if the input data is not a multiple
of 64 bytes long, then extra zeros are appended until a multiple is reached. This can be
verified by creating a file of 64 characters, each being a byte long (Screenshot9), and then
passing that file to md5collgen to observe the output (Screenshot10). Observing this output
reveals that no extra zeros are appended to the file (Screenshot11) whereas when the same
procedure is performed with a non-multiple of 64-byte length file (Screenshot12), appended
zeros can be observed (Screenshot13). When the binary executables for each of these files

are compared against each other (Screenshot14)(Screenshot15), the bytes that can be

observed as different are in the decimal byte positions of 84, 123, 148, 174, 175, 110, and
188. In each instance, the hexadecimal value was altered by only one bit. For example, the
value 0x16 was changed to 0x96 at byte 84 and the value 0x34 was changed to 0xB4 at byte
174. Further, the transformation of each byte was by exactly 128 in value with the exception
of the transformation from Ox5A to 0x59 producing a change value of 1. This feature of MD5
collisions is very interesting as it reveals the types of changes that produce similar hash
values, such as transformations of exactly 128 in value. However, despite these differences,
comparing the hash values continues to show identical values highlighting a collision has
occurred with the mapping between the hashed values and the inputs (Screenshot16).

The second task of the lab then introduced a fundamental property of MD5 hashes being
that if the same value is appended to two files with the same hash value, they will persist to

have matching hash values (Long, 2019). This can be verified by concatenating the same

value to the end of two values returned from md5collgen and comparing the hashed sums
(Screenshot17). Doing so will then verify that this property is true and is further upheld when
appended to either end of the file as long as it is appended to the same end on both files. This
property is critical to collision attacks as it then allows for malicious code to be embedded
within code that already hashes with the value to be achieved. As will be explored in the next
steps, this vulnerability can then be exploited to modify code in both output and
functionality.

Task three begins to explore this property by instructing for the generation of two input
files that vary in data, but hash to the same value. To accomplish this task, a source code file
was first created in C where | filled an array of length 200 with Xs (Screenshot18). The
reason it was chosen to fill the array with exclusively one letter is so that the location of the
array would be easier to spot in the binary executable file with many identical characters in
sequence. After this, the source file was compiled into an executable (Screenshot19) and
observed within the bless editor. Observing this file in bless, the revealed that the array
started at decimal index 4113 (Screenshot20). The next step for this task was then to parse
out the middle section of the file containing the array for modification with the md5collgen
function before piecing the file back together through concatenation. For this reason, | would
need to parse a 128-byte region from the section of the file containing the array, leaving the
rest to be included in the prefix or suffix for the file. The prefix for the array needs to be a
multiple of 64-bytes to ensure the file can be pieced back together without extra padding
being added and for this reason, the start of the array at index 4113 was not a suitable start
location. I then chose index 4160 as the starting index for this block and set the ending point

128 bytes later at index 4288. This was accomplished by first using the head and tail

functions to gain the prefix and suffix outside of these bounds (Screenshot21) and then using
the bless editor to remove the prefix (Screenshot22) and suffix (Screenshot23) and save the
remaining 128 bytes as a new file (Screenshot24). Both the newly created prefix and suffix
were then run through the md5collgen function to retrieve new values for each
(Screenshot25) and these values were compared using the cmp command to identify differing
characters (Screenshot26). As an intermediary step, all of the newly generated prefixes and
suffixes were checked using md5sum to confirm that the hash values for these elements
persisted to match up (Screenshot27). Following this, the 128-byte array value was parsed
out of each prefix using the tail command (Screenshot28) before the prefixes, suffixes, and
array values were concatenated back together to produce the new files. The hash values for
each of these values were then compared and shown to match (Screenshot29) demonstrating
the concatenation property (Screenshot30) and completing task three.

The final task then required the implementation of a file that not only represented a
change in data but in functionality. Through using concatenation within a file, the fourth task
demonstrates how a malicious file could be made to hash with a non-malicious file using
MD?5 collision exploitation (Long, 2019). To demonstrate this concept, | began by creating a
file with two arrays of length 200 filled with Xs (Screenshot31). This file also prints that the
code is safe when all of the values in each array match and that the code is malicious when
they do not (Screenshot32). Using bless to examine the executable, the long string of Xs is
easily located (Screenshot33). The two arrays can then be distinguished by adding 200 to the
starting X index of 4112 to see that the second array begins at index 4312. However, as the
prefix will need to be of a length divisible by 64, the starting bit for the middle section to be

parsed out was switched to 4160 with the 128-bytes ending at index 4288. As before, the

prefix and suffix could then be created through the use of the head and tail commands
(Screenshot34) and made collision-ready (Screenshot35). The outputs from md5collgen
could then be parsed to retrieve a value for both the “safe” and “malicious” code
(Screenshot36) that hash to the same value (Screenshot37). With these extracted, the two
files could then be built back together (Screenshot38) and as a concatenation is performed
exclusively of elements with matching hash values, the final product maintains the matching
hash values.

Lab Analysis:

This lab highlighted many interesting features such as the effect of the processing block
size, byte transformation value, and concatenation properties of MD5 hashes. Having an
understanding of the elements that affect the final hash value allows for the clever
modification of values in such a way that the final hash remains unaltered (Long, 2019). This
is a serious concern as the loss of the ability to validate that a hash came from a single input
undermines the ability to use the hashing algorithm. The loss of this property would then
disable the ability to compare hashes as two like hashes may have come from different
sources or enable malicious code to masquerade as benign code with the same hash sum. The
high rate of collisions in MD5 highlights a serious vulnerability (Mohammed Ali & Kadhim
Farhan, 2020), and from this, it is then easy for a security professional to understand the
deprecation of this algorithm (Obaida et al., 2022). While the MD5 function is no longer in
use, studying the function provides a greater understanding of hashing functions as a whole
and the security implications of hashing collisions.

When thinking of a common context in which hashing is regularly used such as password

storage or database lookups (Shen et al., 2022), it is clear to see the potential dangers of MD5

collision exploits. If a password value is hashed but has several other inputs that could hash
to that same value, then the security of the password is greatly diminished. Likewise, when
searching a database through stored hash values, the hash values could be exploited to index
into unintended areas of the database. For this reason, security professionals working in an
environment where hash functions are used must understand the implications of their chosen
hash function and ensure that vulnerabilities of collisions are mitigated.
Conclusion:

Despite the security concerns involved with deprecated hash functions, hashing remains
an extremely relevant and useful form of modern cryptography (Microsoft, 2022).
Understanding the vulnerabilities associated with collision attacks then allows a security
professional to implement hash functions securely and address potential vulnerabilities
before they are exploited. Further, non-deprecated algorithms could be chosen or modified to
increase security and mitigate the risk of collisions (Alenezi et al., 2022). Growth in this
knowledge can then be gained through researching and exploring deprecated algorithms such
as MD5 or SHA1 and understanding the reasons why they are vulnerable to attack. Seeking
to understand these algorithms can then promote the principles of integrity and non-

repudiation through the secure application of hashing algorithms.

10

References
Alenezi, M. N., Alabdulrazzaq, H., & Mohammad, N. Q. (2020). Symmetric encryption
algorithms: Review and evaluation study. International Journal of Communication
Networks and Information Security, 12(2), 256-272.

https://www.proguest.com/docview/2440677681?pa-

origsite=summon&accountid=12085

Amazon. (2023). AWS cryptography services: AWS cryptographic services and tools guide.

Amazon. https://docs.aws.amazon.com/pdfs/crypto/latest/userquide/crypto-

ug.pdf#concepts-algorithms

Basta, A. (2018). Oriyano, cryptography: Infosec pro guide. McGraw-Hill Education.

https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14

Microsoft. (March 11, 2022). Overview of encryption, digital signatures, and hash algorithms in

.NET. Microsoft. https://learn.microsoft.com/en-

us/dotnet/standard/security/cryptographic-services

Long, S. (2019). A comparative analysis of the application of hashing encryption algorithms for
MD5, SHA-1, and SHA-512. Journal of Physics. Conference Series, 1314(1),

12210. https://doi.org/10.1088/1742-6596/1314/1/012210

Mohammed Ali, A., & Kadhim Farhan, A. (2020). A novel improvement with an effective
expansion to enhance the MD5 hash function for verification of a secure E-
document. IEEE Access, 8, 80290-

80304. https://doi.org/10.1109/ACCESS.2020.2989050

Obaida, T. H., Salman, H. A., & Zugair, H. N. (2022). Improve MD5 hash function for document

authentication. Webology, 19(1), 7223-7234.

https://www.proquest.com/docview/2440677681?pq-origsite=summon&accountid=12085
https://www.proquest.com/docview/2440677681?pq-origsite=summon&accountid=12085
https://docs.aws.amazon.com/pdfs/crypto/latest/userguide/crypto-ug.pdf#concepts-algorithms
https://docs.aws.amazon.com/pdfs/crypto/latest/userguide/crypto-ug.pdf#concepts-algorithms
https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-services
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-services
https://doi.org/10.1088/1742-6596/1314/1/012210
https://doi.org/10.1109/ACCESS.2020.2989050

11

https://www.proquest.com/docview/2692792776?accountid=12085&forcedol=true&forc

edol=true&pg-origsite=summon

Shen, Y., Wu, T., Wang, G., Dong, X., & Qian, H. (2022). Improved collision detection of MD5
using sufficient condition combination. The British Computer Society. Computer

Journal. https://doi.org/10.1093/comijnl/bxab109

https://www.proquest.com/docview/2692792776?accountid=12085&forcedol=true&forcedol=true&pq-origsite=summon
https://www.proquest.com/docview/2692792776?accountid=12085&forcedol=true&forcedol=true&pq-origsite=summon
https://doi.org/10.1093/comjnl/bxab109

Screenshotl: (Return to text)

Screenshot2: (Return to text)

Screenshots: Task 1

parallels@ubuntu-linux-22-04-desktop: ~

Aug30 1857 0}

parallels@ubuntu-linux-22-04-desktop: /usr/bin

12

Screenshot3: (Return to text)

1§ touch prefix.txt
%

: $ mdscollgen -p prefix.txt
MDS collision generator vi.5
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'outl.bin' and ‘out2.bin
Using prefixfile: 'prefix.txt’
Using initial value: 0123456789abcdeffedcba9876543210

Generating first block:
Generating second block: W
Running time: 10.9344 s

parallels@ubuntu-linux-22-04-desktop: ~

parallels@ubuntu-linux-22-04-desktop: ~

-0 outl.bin out2.bin

13

Screenshot5: (Return to text)

o} parallels@ubuntu-linux-22-04-desktop: ~

:-§ mdScollgen -p prefix.txt -o outl.bin outZ.bin
MD5 collision generator v1.5
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: ‘outl.bin' and 'out2.bin'
Using prefixfile: 'prefix.txt’'
Using initial value: 8123456789abcdeffedcba9876543210

Generating first block:
Generating second block: W
Running time: 10.9344 s

i § diff outl.bin out2.bin
Binary files outi.bin and out2.bin differ

Screenshot6: (Return to text)

Activities () Terminal Aug 30 18:59

e " !

: S mdSsum outl.bin
38338e6a22686fd9aded7a1f424e3a3a outl.bin

4 1§ mdSsum out2.bin
. 38338e6a22686fd9aded7a1f424e3a3a out2.bin

S

Screenshot7: (Return to text)

ts File Edit View Search Tools Help
& 1 5§ B
B #) .‘

Signed 8 bit:
Unsigned 8 bit:

Signed 16bit: = 18444
Unsigned 16 bit

e Show little endian decoding
.

% Bless Hex Edito

Signed 32 bit

Unsigned 32 bit
Float 32 bit

Float 64 bit

/home/parallels/out1.bin - Bless

Show unsigned as hexadecimal

Hexadecimal

Decimal:

Octal:

Binary

ASCII Text:

Offset: 0x0 / Ox7f

Selection: None INS

File Edit View Search Tools Help
° h v 2 Y
. out1.bin »X out2.bin i%

4

signed

gned 8 bit

d 16 bit

gr

Unsigned 16 bit

Show little endian decoding

Signed 32 bit

Un: d 32 bit

oat 32 bit

Float 64 bit

/home/parallels/out2.bin - Bless

Show unsigned as hexadecimal

Hexadecimal

Decimal.

Octal:

Binary

ASCII Text

Selection: None INS

Offset: 0x0/ Ox7f

15

Screenshot9: (Return to text)

Write Out B whe M cut B Exec [l undo
il Read File M Replace Ml Paste B Justif To Line i Redo

Screenshot10: (Return to text)

Activities =) Ter A Q

»
<
a3
©)
=
&

parallels@ubuntu-linux-22-04-desktop: ~

$ nano prefix.txt

$ mdScollgen -p prefix.txt -o outl.bin out2.bin
MD5 colliston generator vi1.5
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filename outl.bin' and 'out2.bin
Using prefixfile: 'prefix.txt’
Using initial value: 7464bf6c97e2b2a5596a7285b103b8bc

nerating first block
Generating s
Running time

Set Mark

Copy

F

To Bracket
where Was

16

Screenshotl1: (Return to text)

/home/parallels/out1.bin - Bless o x

Binary

signed as hexadecimal ASCII Text

Oxbf Selection: None

& Terminal
ol

GNU nano
This_File_I

&'
al
©
<]
&

Write Out e s t Execute Location Undo Mark o B
il Read File B Justify o Redo Y Where Was

17

18

Screenshot13: (Return to text)

/home/parallels/out1.bin - Bless 5 ® &
"s File Edit View Search Tools Help
D A~ ABER QQ

out1.bin i%

Signed 8bit: 84 Signed 32bit: 141612888 Hexadecimal: = 54 6869 °
Unsigned 8 bit: 84 Unsigned 32 bit: = 1416128883 Decimal: = 084 104 105
Signed 16bit: = 216 Float 32 bit Octal) 6
Unsigned 16bit: = 2160 Float 64 bit: = 4.1714830056735E+ Binary: 0101010001101 110100101
“es
s Show little endian decoding Show unsigned as hexadecimal ASCH Text: Tt
Offset 0x0/ Oxff Selection: None INS
Jhome/parallels/out1.bin - Bless - & ®

File Edit View Search Tools Help
tPBE " LEH QG

out1.bin i outZ.bin X

Signed 8bit: 84 Signed 32 bit: 1416128883 Hexadecimal: 54 686973 e
Unsigned 8bit: 84 Unsigned 32 bit: Decimal 5
Signed 16 bit: 21608 Float 32bit: 3.992806E+12 Octal: 124150 151163
Unsigned 16 bit: 216¢ Float 64 bit: 4. 567356498 Binary: 01010100 0110100001101001 01110011
Show little endian decoding Show unsigned as hexadecimal ASCIl Text: This

Offset: 0x0 / OxbFf Selection: None INS

19

Screenshot15: (Return to text)

Activities % Bless Hex Editor Aug 30 20:17

/home/parallels/out2.bin - Bless B & 8

Unsigned 8 bit: = 84 Unsig Decimal
signed 16 bit Octal
6bit F Binary:

Show little endian decoding Show ASCII Text

Offset: 0x0 / Oxbf Selection: None INS

=) Terminal Aug 30 20:50

, ™ parallels@ubuntu-linux-22-04-desktop: ~
:$ mdSsum outl.bin out2.bin

299522668ed5b46d0d9b897b65b8c996 outl.bin
299522668ed5b46d0d9b897b65b8c996 out2.bin

Screenshots: Task 2

Screenshotl7: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~

1§ mdSsum outl.bin out2.bin
299522668ed5b46d0d9b897b65b8CI6 outl.bin
299522668ed5b46d0d9b897b65b8CcI6 out2.bin

: § echo appendvalue >> out1.bin

$ echo appendvalue >> out2.bin

$ mdSsum outl.bin out2.bin
fa72541f3c66de78526fc61075539cab outl.bin
fa72541f3c66de78526fc61075539cab {

Screenshot18: (Return to text)

& Terminal

GNU_nano cfunctioni.c

xyz[

ox78,

ox78,

ox78, 6x78,
ex78, 0x78,
ox78, ©x78,
ox78, 6x78,
, Ox78, 6x78,
ox78, 6x78,

200] = {

ox78, 0x78,0x78,
ex78, 0x78,0x78,
ox78, 0x78,0x78,
0x78, 0x78,0x78,
0x78, 0x78,0x
0x78, 0x78,0x78,
78, ©x78,0x78,
ex78, 0x78,0x78,

200; 1++){

}
printf();

xyz[1]);

Write out
Wil Read File

ox78, Ox78,
ox78, 6x78,
0x78, 6x78,

ox78, 0x78

ox78,
ox78,
ox78,
, 0x78,

where Is
Replace

6; ’
ox78,
ox78,
ox78,
ox78,
ox78,
ox78,

Screenshot19: (Return to text)

Screenshots: Task 3

parallels@ubuntu-linux-22-04-desktop: ~

0x78,0x78, 0x78, OX78, , ©x78,0x78, Ox78,
ox78,0x78, 0x78, Ox78, 6x78,0x78, Ox78,
ox78,0x78, Ox78, Ox78, , ©x78,0x78, Ox78,
0x78,0x78, , 0x78, 0x78, 0x78,0x78, Ox78,
0x78,0x78, 8, 0x78, 0x78,0x78, Ox78,
0x78,0x78, Ox78, 6x78, 0x78,0x78, 6x78,
ox78,0x78, 0x78, Ox78, 0x78,0x78, Ox78,
ex78,0x78, , Ox78, ©x78, OX78,0x78, OX7!

Bl Execute Location
& Justify Go To Line

parallels@ubuntu-linux-22-04-desktop: ~

-0 cfuncti

ox78,
ox78,
ox78,
ox78,
ex78,
ox78,
ox78,
ox7

ox78,
ox78,
ox78,
ox78,
0x78,
ox78,
ox78,
ox78,

Undo
Redo

0x78,0x78,
0x78,0x78,
0x78,0x78,
ox78,0x78,
0x78,0x78,
0x78,6x78,
0x78,0x78,
ox78,0x78,

ox78, ©x78,
ox78, 6x78,
ox78, 0x78,
ex78, 0x78,
ox78, ©x78,
ox78, Ox78,

ox78,
ox78, Ox78,

Set Mark
Copy

ox78,
ox78,
ox78,

ox78,

F

ox78,
ox78,
ox78,
ox78,
ox78,
ox78,
ox78,
ox78

To Bracke
where Was

21

Screenshot20: (Return to text)

/home/parallels/cfunctiont.out - Bless B & @

-~
w0
gned 8 gned 32 bi Hexadecima
Decima
Octal
Unsigned 16 bit Float 64 bit 8ina
e
Show litt n decoding Show unsigned as hexadecimal ASCHI Text
.

Offset: 0x1010 / 0x23d7 Selection: None INS

Aug31 16:04
parallels@ubuntu-linux-22-04-desktop: ~
1S head -c 4160 cfunctionl.out > newPrefix

1§ tall -c 4288 cfunctionl.out > newSuffix
-8

Screenshot22: (Return to text)

File Edit View Search Tools Help
B " LBB QA

cfunctiont.out*

00000468
00000489
00000daa
00000dch
00000dec
00000e0d
00000e2e
00000e4€
00000e70
00000e91
00000eb2
00000ed3
00000efd
00000£15
00000£36
00000£57
00000£78
00000£99
00000fba
00000£db
00000£fc
00001014
0000103e
0000105¢
00001080
000010al

78 78
78 78
78 78

78
78
78

78
78
78

78
78
78

78
78
78

78
78
78

78
78
78

78
78
78

78
78
78

Select range from: 0

Signed 8 bit:
Unsigned 8 bit:
Signed 16 bit:
Unsigned 16 bit:

Show little endian decoding

File Edit View Search Tools

tBE "~ AE6B

cfunctiont.out X

Help

@« Q

00002094
000020be
0000204f
00002100
00002121
00002142
00002163
00002184
000021a5
000021c6
000021e7
00002208
00002229
00002242
0000226b
0000228¢c
000022ad
000022ce
000022ef
00002310
00002331
00002352
00002373
00002394
000023b5
00002346

Select range from: 4288
Signed 8bit: 127
Unsigned 8 bit: 127

Signed 16bit: 32581

Unsigned 16 bit: 32581

Show little endian decoding

/home/parallels/cfunctiont.out * - Bless

78

78 78
78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
to/slength 4160
Signed 32bit: —
Unsigned 32 bit: —
Float 32bit: —
Float64bit: —

Signed 32 bit:
Unsigned 32 bit:
Float 32 bit:

Float 64 bit:

Show unsigned as hexadecimal

/home/parallels/cfunctiont.out - Bless

to/tlength 9175

2135247942
2135247942
2.622539E+38
1.16843158995565E+305

Show unsigned as hexadecimal

78
78
78

78
78
78

78
78
78

78
78
78

78
78
78

78
78
78

Hexadecimal:
Decimal:
Octal:

Binary:

ASCII Text:

Offset: 0x10¢0 / 0x10bF

Hexadecimal:

Decimal:
Octal:
Binary:

ASCll Text:

Offset: 0x0/ 0x23d7

78
78

78
78

o« O

Selection: 0x0 to 0x1040 (0x1041 bytes) INS

O ©

TF454C46

127069076070

177105114106

01111111 01000101 01001100 01000110
[ecr

Selection: 0x10c0 to 0x23d7 (0x1318 bytes) INS

Screenshot24: (Return to text)

Aug31 1606 02

/home/parallels/middleSection1 - Bless

Search Tools Help

TR - x (7
5
ﬂf}/
‘ o ©
signed Signed 32 bit Hex
Unsigned gned 32 bit 1 Decimal
Signed 16 bit. d Float 32 bit E+34 Octa 7
Unsigned 16 bit 4 Float 64 bit 42847014 2 Binary;

adecima ASCII Text:

nsigned as he

Show little endian decoding

Offset: 0x0/ 0x7d Selection: None

parallels@ubuntu-linux-22-04-desktop:

$ tall -c 4288 cfunctioni.out > newSuffix

$ head -c 4160 cfunctionl.out > newPrefix

$ mdScollgen -p newPrefix -o prefixi.bin prefix2.bin
MDS collision generator vi.S
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'prefixi.bin' and 'prefix2.bin’
Using prefixfile: 'newPrefix’
Ustng initlal value: 8c119e1717843043c0e3b704f7504916

Generating first block:
Generating ond bloc
Running time: 10.3413 s
$ mdscollgen -p newSuffix -o Suffixi.bin Suffix2.bin
MD5 collision generator vi
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'Suffixi.bin' and 'Suffix2.bin'
Using prefixfile: 'newsuffix'
Using inltlal value: 682e63824cc20d39562585742a8b1048

Generating first block
Generating second bloc
Running time: 72.3646 s

24

Screenshot26: (Return to text)

) Terminal Aug 30 22:38

parallels@ubuntu-linux-22-04-desktop: ~

$ tall -c 4288 cfunctionl.out > newSuffix

$ head -c 4160 cfunctioni.out > newPrefix

$ mdScollgen -p newPrefix -o prefixi.bin prefix2.bin
MDS collision generator v1.5
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'prefixi.bin' and 'prefix2.bin
Using prefixfile: 'newPrefix
Using initial value: 8c119e1717843043c0e3b70417504916

Generating first block
Generating second bl
Running time: 10.3413 s

$ mdScollgen -p newSuffix -o Suffixi.bin Suffix2.bin
MDS collision generator vi.5
by Marc Stevens (http://www.win.tue.nl/hashclash

Using output filenames: 'Suffixi.bin' and 'Suffix2.bin
Using prefixfile: 'newSuffix
Using initial value: 682e63824cc20d39562585742a8b1048

Generating first block:

Generating second block: S11.
Running time: 72.3646 s

$ cmp
4180 340 M-' 140
4206 270 M-8 70
4207 25 AU 2
4220 272 M 7
4244 37 A_ 3
4270 s 5
4271 107 G o
4284 77 ? 7

6
7

7

Screenshot27: (Return to text)

Activities &) Terminal
parallels@ubuntu-linux-22-04-desktop: ~

$ mdssum prefix1.bin
€89¢360136b675d05e22c3basf41fda8 prefixi.bin
: § mdssum prefix2.bin
€89¢360136b675d05e22c3basf41fdas ix2.bin
:$ mdSsum Suffixi.bin
9ae2a14236aefcf65d463a09c51e696b Suffixi.bin
$ mdssun Suffix2.bin
9ae2a14236aefcf65d463a09c51e696b Suffix2.bin
2§

Screenshot28: (Return to text)

parallels@ubuntu-linux-22-04-desktoj

$ head -c 4224 cfunctionl.out > newPrefix

$ mdscollgen -p newPrefix -o prefixi.bin prefix2.bin
MDS collision generator vi.5
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'prefixi.bin' and 'prefix2.bin
Using prefixfile: 'newPrefix
Using initial value: 90f9e2b06bad981ase2f6f4da76fc2f7

Generating first block:
Generating second block:
Running time: 28.8259 s
$ taill -c +4352 cfunctionl.out > newSuffi
$ mdScollgen -p newSuffix -o Suffix1.bin Suffix2.bin
MDS collision generator v1.5
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'Suffixi.bin' and 'Suffix2.bin'
Using prefixfile: 'newSuffix’
Using initial value: 76f3cce96ee6c80ee907767e01248341

Generating first block:
Generating second block: 516...
Running time: 4.72501 s
tatl -c 128 prefixi.bin > middleSection1
tail -c 128 prefix2.bin > middleSection2
cat newPrefix middleSectionl newSuffix > firstCFunction
cat newPrefix middleSection2 newSuffix > secondCFunction
H md5sum firstCFunction
1cb1767d7252041dc6badeba22d60323 firstCFunction
: $ md5sum secondCFunction
1cb1767d7252041dc6badeba22d60323 secondCFunction
]

Screenshot29: (Return to text)

Aug 30
parallels@ubuntu-linux-22-04-desktop: ~

$ head -c 4224 cfunctionl.out > newPrefix
$ mdScollgen -p newPrefix -o prefixi.bin prefix2.bin

MDS collision generator vi.5

by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'prefixi.bin' and 'prefix2.bin
Using prefixfile: 'newPrefix'
Using initial valu 90f9e2bo6bad981asSe2f6fadarefcaf7

Generating first block:
Generating second block
Running time: 28.8259 s
$ tall -c +4352 cfunctionl.out > newSuffix
$ mdScollgen -p newSuffix -o Suffixi.bin Suffix2.bin
MDS collision generator vi.
by Marc Stevens (http://www.win.tue.nl/hashclash/)
Using output filenames: 'Suffix1i.bin' and ‘Suffix2.bin
Using prefixfile: 'newSuffix
Using initial valw 76f3ccO96ee6c80ee907767e0f248341

Generating first block:

Generating second block: S16....
Running time: 4.72501 s

tail -c 128 prefix1.bin > middleSection1
tail -c 128 prefix2.bin > middleSection2
cat newPrefix middleSection1 newSuffix > firstCFunction
cat newPrefix middleSection2 newSuffix > secondCFunction
1§ mdSsum firstCFunction
1cb1707d7252041dc6badeba22d60323 firstCFunction
$ mdSsum secondCFunction
1cb1767d7252041dc6badeba22d60323 secondCFunction
$ cmp -1b firstCfunction secondCFunction
cmp: firstCfunction: No such file or directory
$ cmp -1b firstCFunction secondCFunction
76
4270 375
4271 347 M
4284 220
4308 47
4334 170
4335 122
4348 357

Screenshot30: (Return to text)

Aug30 2
parallels@ubuntu-linux-22-04-desktop: ~

Using prefixfile: 'newPrefix'
Using initlal value: 90f9e2b06bad981a5e2f6fad476fc2f7

Generating first block:
Generating second block
Running time: 28.8259 s
$ tail -c +4352 cfunctionl.out > newSuffix
$ mdScollgen -p newSuffix -o Suffixi.bin Suffix2.bin
MDS collision generator vi.5
by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'Suffix1.bin' and 'Suffix2.bin
Using prefixfile: 'newsuffi
Using inttial value: 76f3cc096ee6c80ee907767e0f248341

Generating first block
Generating second bloc
Running time: 4.72501
tatl -c 128 prefixi.bin > middleSectioni
tall -c 128 prefix2.bin > middleSection2
cat newPrefix middleSectionl newSuffix > firstCFunction
cat newPrefix middleSection2 newSuffix > secondCFunction
: ndSsum firstCFunction
1cb1707d7252041dc6badeba22d60323 firstCFunction
$ mdSsum secondCFunction
1cb1707d7252041dc6badeba22d60323 secondCFunction
S cmp -1b firstCfunction secondCFunction
firstCfunction: No such file or directory
$ cmp -1b firstCFunction secondCFunction
276
175
350
20
247
370
121
157
$ chmod +x firstCFunction
S chmod +x secondCFunction
$./firstCFunction
78787878787878787878787878787878 78
7878787878787878787878787878787 878787878787878787878787878784c38b99706fc418da1754€612326129238213ef fb526fb314640a5b298153fabf1b1fcfO644a638b6f2fad3fde7
6e9bcodde1e4c99472cf63e790f0fd7 143d23f12bdefeef5906b8d4167e41558ec2789f2c62¢

7
:-$./secondCFunction
78
784c3f8b99706fc418da1754€61232612923821bef fb526fb314640a5b298153Fabf1b1fcf06442638b6F2fad37des
6e9bcodde1e4c99472cf63e710f0fd7eb24c9143d23f12bdefeef5906b8d4167e41558eca789f2c62¢

S

27

Screenshots: Task 4

Screenshot31: (Return to text)

parallels@ubuntu-linux-22-04-desktop: ~
diffBehaviours.c

200] = {
ox78, 0x78, 0x78, Ox78, 0x78,0x78, Ox78, Ox78, Ox78, 0x78,0x78, Ox78, Ox78, Ox78, Ox78,0x78, OX78, Ox78, Ox78, 0x78,0x78, Ox78, Ox78, Ox78, 0X78,
ox78, 0x78, 0x78, 0x78, 0x78,0x78, Ox78, 0x78, 0x78, 0X78,0x78, Ox ox78, 6x78, 0x78,0x78, Ox78, Ox78, Ox78, Ox78,0x78, Ox78, 0X78, 0x78, Ox78,
ox78, 0x78, 0x78, Ox78, OX78,0x78, 6x78, 6x78, 0x78,0x78, ox78, 6x78, 6x78,06x78, Ox78, Ox78, Ox78, Ox78,0x78, 6x78, 0X78, Ox78, OX78,
0x78, Ox78, 0x78, OX78, 0X78,0x78, , 6x78, 0x78, Ox78,0x78, , Ox78, 0x78, Ox78,0x78, 0x78, Ox78, 0x78,0x78, 0x78, Ox78, Ox78, OX78,
ox78, Ox78, 8x78, 0x78, Ox78,0x78, OX ex78, 0x78, 0x78,0x78, ox78, 6x78, 6x78,0x78, Ox78, Ox78, Ox78, Ox78,0x78, 6x78, 6x78, Ox78, OX78,
ox78, 0x78, 0x78, Ox78, 0x78,0x78, ox78, 0x78, Ox78,0x78, ox78, 0x78,0x78, 0x78, 0x78, 0x78,0x78, Ox78, ©x78, Ox78, OX78,
ox78, 0x78, Ox78, 0x78, 0x78,0x78, ex78, 6x78, 0x78,0x78, ox78, ox78,0x78, 6x78, 0x78, 0x78, Ox78,0x78, Ox78, Ox78, Ox78, OX78,
ox78, Ox78, 0x78, 0x78, 0X78,0x78, 0x78, 6x78, ,0x78, 8, Ox78, 0x78,0x78, 0x78, 0x78, 0x78, Ox78,0x78, Ox78, Ox78, OX78, OX78

y[200] = {

ox78, 0x78, Ox78, Ox78, 0x78,0x78, 8x78, O ox78, 78, ox78, 6x78,0x78, Ox78, Ox78, Ox78, Ox78,0x78, OX78, ex78, 0x78,
ox78, 6x78, Ox78, Ox78, 0x78,0x78, OX78, ox78, x78, OX78, O ©0x78,0x78, Ox78, Ox78, 0x78, Ox78,0x78, OX78, ox78, Ox78,
ox78, 0x78, Ox78, Ox78, 0x78,0x78, OX78, ox78, 0x78,0x78, Ox78, 0x78,0x78, Ox78, Ox78, OX78, Ox78,0x78, Ox78, Ox78, OX78, Ox78,
ex78, 0x78, 0x78, Ox78, 0x78,0x78, Ox78, ox78, 6x78,0x78, x78, 5 0x78,0x78, Ox78, Ox78, 0x78, Ox78,0x78, Ox78, Ox78, Ox78, Ox78,
ox78, 0x78, Ox78, Ox78, 0x78,0x78, OX78, 0x78, 0x78,0x78, 78, 0x78,08x78, Ox78, Ox78, OX78, Ox78,8x78, Ox78, Ox78, OX78, Ox78,
ox78, 0x78, Ox78, 0x78,0x78, Ox78, 0x78,0x78, Ox 6x78,0x78, 0x78, Ox78, 0x78, Ox78,0x78, Ox78, Ox78, OX78, Ox78,
ox78, 0x78, Ox78, 8, 0x78,0x78, 078, 78, Ox78,0x78, ’ , 0x78,06x78, Ox78, Ox78, OX78, Ox78,0x78, Ox78, Ox78, OX78, Ox78,
ox78, 0x78, 0x78, 0x78,0x78, 0x78, 0x78,0x78, ©x 0x78,06x78, Ox78, Ox78, 0x78, Ox78,0x78, 0x78, Ox78, 0x78, Ox78

mat

(issane true)
printf(

printf('H

Wrote 48 lines

Help Write Out B where Is A B Execute K8 Location Undo l set Mark To Bracket
o Exit Ml Read File Replace & Justify Go To Line Redo Copy here

) Terminal Aug31 1
parallels@ubuntu-linux-22-04-desktop: ~

nano diffBehaviours.c
sudo gcc diffBehaviours.c -o diffbehaviours.out
. /diffbehaviours.out

SAFE CODE

Screenshot33: (Return to text)

Aug31 16:52 13

/home/parallels/diffbehaviours.out - Bless

diffbehaviours.out

Signed 8 bit:

Unsigned 8 bit
Signed 16 bit:

Unsigned 16 bit:

Activities =) Terminal

Binary

unsigned as hexadecimal ASCII Text

Aug 31 16
parallels@ubuntu-linux-22-04-desktop: ~
$ nano diffBehaviours.c

$ sudo gcc diffBehaviours.c -o diffbehaviours.out
$./diffbehaviours.out

SAFE CODE RUNNING

Gtk :

Fatled to open
Fatled to open
Fatled to open
could not find

Gtk- H

Fatled to open
Failed to open
Failed to open
Could not find

$ bless diffbehaviours.out
Fatled to load module "canberra-gtk-module”
plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins
plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins’.
plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins
file "/home/parallels/.config/bless/export_patterns
$ nano diffBehaviours.c
$ sudo gcc diffBehaviours.c -o diffbehaviours.out
$ bless diffbehaviours.out
Failed to load module "canberra-gtk-module
plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins
plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins
plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins’.
file “/home/parallels/.config/bless/export_patterns

$ head -c 4160 diffbehaviours.out > task4_prefix
$ tail -c +4288 diffbehaviours.out > task
s

Offset

tion: None

NS

29

Screenshot35: (Return to text)

) Terminal Aug31 16:58
parallels@ubuntu-linux-22-04-desktop: ~

S mdScollgen -p task4_prefix -o firstOutput secondoutput
MDS5 collision generator v1.5
by Marc Stevens (http://www.win.tue.nl/hashclash

Using output filenames: 'firstOutput’' and 'secondOutput’
Using prefixfile: 'task4_prefix'
Ustng initial value: 3bcc32ae92ac1b7685¢84e00d49e91d6

Generating first block:

Generating second block: S61.
Running time: 36.

Activities) Terminal Aug 31
parallels@ubuntu-linux-22-04-desktop: ~
$ mdScollgen -p taskd_prefix -o firstOutput secondOutput

MDS collision generator vi.5
by Marc Stevens (http://www.win nl/hashclash/)

Using output filenames: 'firstOutput' and 'secondOutput’
Using prefixfile: 'task4_prefix'
Using initial value: 3bcc32ae92ac1b7685c84e00d49€91d6

Generating first bloc
Generating second block:
Running time: 36.7878 s
$ tall -c 128 firstOutput > safeCode
$ tall -c 128 secondOutput > maliciousCode

s

30

Screenshot37: (Return to text)

Aug 31 17 43

parallels@ubuntu-linux-22-04-desktop: ~

$ mdSsum firstoutput
€19a38cd2911597c5d0eadScfe78a481 Output

S md5sum secondOutput
€19a38cd2911597c5d0eadScfe78a481 secondOutput

Screenshot38: (Return to text)

parallels@ubuntu-linux-22-04-deskto

$ bless taskd_
Gtk- : : Failed to load module "canberra-gtk-module”
Failed to open plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins’.
Falled to open plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins
Falled to open plugins directory: Could not find a part of the path '/home/parallels/.config/bless/plugins’.
Could not find file "/home/parallels/.config/bless/export_patterns”
$ head -c 24 task4_suffix > pre_suffix
S tall -c +152 task4_suffix > suffix_suffix
$1s
Ssuffixi combination1.bin firstoutput middleSection2 out2.bin prefix2.bin task4_prefix
Suffixi.bin cfunctionl.c combination2.bin maliclousCode pre_suffix safeCode taskd4_suffix
suffix2 correctArray.out newPrefix prefix.txt
Suffix2.bin cfunction2.c diffeehaviour mid1.bin newPrefixCopy secondOutput
mid2.bin newsuffix prefixi.bin
collisionArray.out middleSection1 outl.bin suffix_suffix
firstoutput pre_suffix safeCode suffix_suffix > safeFile

	References

