
 1

MD5 Hashing Algorithm Collision Attack Lab Report

Hayden Eubanks

School of Business, Liberty University

CSIS 463-B01

Dr. De Queiroz

August 31, 2023

 2

MD5 Hashing Algorithm Collision Attack Lab Report

Introduction:

Hash functions are an extremely useful form of cryptography that allows for the

mathematical validation of input data without revealing the underlying data that is being

validated (Microsoft, 2022). This feature can seek to provide data confidentiality and

integrity, but also non-repudiation as hashing can be implemented to validate

communications (Basta, 2018). Hashing algorithms are unique from other forms of

encryption in that the encryption performed is not reversible and the encrypted signature is

the element used for verification (Amazon, 2023). Further, hashing algorithms differ from

symmetric and asymmetric encryption by encrypting data into cyphertext values of fixed size

regardless of the input plaintext size (Long, 2019). While this feature is integral to the

functioning of hashing algorithms, it also leads to the potential for collisions where two

distinct input values map to the same hashed value (Shen et al., 2022). Several hashing

algorithms that were once widely used have now been deprecated due to their susceptibility

to collisions including the Message-Digest 5 (MD5) and the Secure Hash 1 (SHA1)

algorithms, and in this lab collision attacks on MD5 will be examined as it is especially

susceptible to collision attacks (Shen et al., 2022). Through exploring the vulnerabilities

present within MD5 a greater understanding of secure hashing algorithms can be achieved

and security professionals can be better equipped to mitigate vulnerabilities associated with

hashing functions.

The MD5 algorithm seeks to encrypt data through five data modification steps. These

steps include the padding of bits, appending the message length, initializing the message

digest buffer, processing the input data, and returning a hashed value (Mohammed Ali &

 3

Kadhim Farhan, 2020). The tasks in this lab highlight the importance of the values associated

with the steps above and in doing so seeks to explore the effects of modifying the number of

bytes passed to the algorithm, the effect of varying message lengths, and the transformation

of the input data itself. This then extends to exploring the weaknesses of MD5 and gaining an

understanding of the risks of implementing it today. While MD5 has been deprecated for

modern use, exploring collisions within MD5 will allow a security professional to gain a

better understanding of the workings of hashing algorithms and better understand the risks

associated with weak implementations.

To accomplish this understanding, the lab begins by providing an introduction to the way

that MD5 processes data and the importance of processing block size in this process. With

this, the md5collgen function is used to generate two differing values that will form a

collision when hashed with MD5. The output values of this function are then examined on

the byte level and contrasted to gain insight into what data values change. This information is

then built upon to establish how this vulnerability in MD5 could lead to malicious code

passing as non-malicious code. After this, the lab practically establishes the fundamental

concept that appending the same value to two identically hashed values will maintain hash

congruency. This opens the possibility for examining code and modifying particular sections

so that the hash value remains the same despite the code being fundamentally altered.

Through these exercises, the lab seeks to highlight the importance of understanding

vulnerabilities associated with hashing algorithms, and a security professional could use this

knowledge to implement algorithms that minimize collisions and in doing so increase

security.

 4

Lab Procedure:

To begin this lab, the md5collgen function must first be installed (Screenshot1) and

added to the system's executable files (Screenshot2) allowing the function to be used on the

system. This function is a collision generator for MD5 taking an input value and returning a

second output value that has the same MD5 hash signature but differing by several bytes

from the original message. While the md5collgen function is unique to the tests performed in

this lab, it aims to represent the potential for collisions, and the security implications of these

collisions are explored in later lab tasks.

With the prerequisite steps then accomplished, the lab work can begin by generating a

new prefix file (Screenshot3) and then passing this file to the md5collgen function to

generate a collision with this file. The diff function can be used to verify that differences

exist between the files (Screenshot5) but when the file hashes are checked with the md5sum

function (Screenshot6) it can be seen that the hash values are identical. This highlights the

problem at the core of the MD5 collision attack which is the ability for distinct values to hash

to the same hash sum (Obaida et al., 2022). As hash values are irreversible (Alenezi,

Alabdulrazzaq, & Mohammad, 2020) there is then no way for an observer of the hash value

to identify which of the possible inputs for that hash value was passed to MD5. Further, and

most relevant for this lab, there is also no way to verify if two given hash values truly

originated from the same plaintext. This is a major security concern as it is then possible for

malicious code to hold the same hash signature as benign code (Mohammed Ali & Kadhim

Farhan, 2020). This can be verified in the lab by using the bless command to observe the

binary executable files generated by md5collgen (Screenshot7) and noting the differences

that exist between them (Screenshot8).

 5

The first section of this lab then asks several questions and through exploring these

questions, a better understanding of MD5 can be obtained. The first of these questions

prompts the exploration of modifying the input file size to multiples of 64 bytes. MD5

processes data in 64-byte blocks (Alenezi et al., 2020) and if the input data is not a multiple

of 64 bytes long, then extra zeros are appended until a multiple is reached. This can be

verified by creating a file of 64 characters, each being a byte long (Screenshot9), and then

passing that file to md5collgen to observe the output (Screenshot10). Observing this output

reveals that no extra zeros are appended to the file (Screenshot11) whereas when the same

procedure is performed with a non-multiple of 64-byte length file (Screenshot12), appended

zeros can be observed (Screenshot13). When the binary executables for each of these files

are compared against each other (Screenshot14)(Screenshot15), the bytes that can be

observed as different are in the decimal byte positions of 84, 123, 148, 174, 175, 110, and

188. In each instance, the hexadecimal value was altered by only one bit. For example, the

value 0x16 was changed to 0x96 at byte 84 and the value 0x34 was changed to 0xB4 at byte

174. Further, the transformation of each byte was by exactly 128 in value with the exception

of the transformation from 0x5A to 0x59 producing a change value of 1. This feature of MD5

collisions is very interesting as it reveals the types of changes that produce similar hash

values, such as transformations of exactly 128 in value. However, despite these differences,

comparing the hash values continues to show identical values highlighting a collision has

occurred with the mapping between the hashed values and the inputs (Screenshot16).

The second task of the lab then introduced a fundamental property of MD5 hashes being

that if the same value is appended to two files with the same hash value, they will persist to

have matching hash values (Long, 2019). This can be verified by concatenating the same

 6

value to the end of two values returned from md5collgen and comparing the hashed sums

(Screenshot17). Doing so will then verify that this property is true and is further upheld when

appended to either end of the file as long as it is appended to the same end on both files. This

property is critical to collision attacks as it then allows for malicious code to be embedded

within code that already hashes with the value to be achieved. As will be explored in the next

steps, this vulnerability can then be exploited to modify code in both output and

functionality.

Task three begins to explore this property by instructing for the generation of two input

files that vary in data, but hash to the same value. To accomplish this task, a source code file

was first created in C where I filled an array of length 200 with Xs (Screenshot18). The

reason it was chosen to fill the array with exclusively one letter is so that the location of the

array would be easier to spot in the binary executable file with many identical characters in

sequence. After this, the source file was compiled into an executable (Screenshot19) and

observed within the bless editor. Observing this file in bless, the revealed that the array

started at decimal index 4113 (Screenshot20). The next step for this task was then to parse

out the middle section of the file containing the array for modification with the md5collgen

function before piecing the file back together through concatenation. For this reason, I would

need to parse a 128-byte region from the section of the file containing the array, leaving the

rest to be included in the prefix or suffix for the file. The prefix for the array needs to be a

multiple of 64-bytes to ensure the file can be pieced back together without extra padding

being added and for this reason, the start of the array at index 4113 was not a suitable start

location. I then chose index 4160 as the starting index for this block and set the ending point

128 bytes later at index 4288. This was accomplished by first using the head and tail

 7

functions to gain the prefix and suffix outside of these bounds (Screenshot21) and then using

the bless editor to remove the prefix (Screenshot22) and suffix (Screenshot23) and save the

remaining 128 bytes as a new file (Screenshot24). Both the newly created prefix and suffix

were then run through the md5collgen function to retrieve new values for each

(Screenshot25) and these values were compared using the cmp command to identify differing

characters (Screenshot26). As an intermediary step, all of the newly generated prefixes and

suffixes were checked using md5sum to confirm that the hash values for these elements

persisted to match up (Screenshot27). Following this, the 128-byte array value was parsed

out of each prefix using the tail command (Screenshot28) before the prefixes, suffixes, and

array values were concatenated back together to produce the new files. The hash values for

each of these values were then compared and shown to match (Screenshot29) demonstrating

the concatenation property (Screenshot30) and completing task three.

The final task then required the implementation of a file that not only represented a

change in data but in functionality. Through using concatenation within a file, the fourth task

demonstrates how a malicious file could be made to hash with a non-malicious file using

MD5 collision exploitation (Long, 2019). To demonstrate this concept, I began by creating a

file with two arrays of length 200 filled with Xs (Screenshot31). This file also prints that the

code is safe when all of the values in each array match and that the code is malicious when

they do not (Screenshot32). Using bless to examine the executable, the long string of Xs is

easily located (Screenshot33). The two arrays can then be distinguished by adding 200 to the

starting X index of 4112 to see that the second array begins at index 4312. However, as the

prefix will need to be of a length divisible by 64, the starting bit for the middle section to be

parsed out was switched to 4160 with the 128-bytes ending at index 4288. As before, the

 8

prefix and suffix could then be created through the use of the head and tail commands

(Screenshot34) and made collision-ready (Screenshot35). The outputs from md5collgen

could then be parsed to retrieve a value for both the “safe” and “malicious” code

(Screenshot36) that hash to the same value (Screenshot37). With these extracted, the two

files could then be built back together (Screenshot38) and as a concatenation is performed

exclusively of elements with matching hash values, the final product maintains the matching

hash values.

Lab Analysis:

This lab highlighted many interesting features such as the effect of the processing block

size, byte transformation value, and concatenation properties of MD5 hashes. Having an

understanding of the elements that affect the final hash value allows for the clever

modification of values in such a way that the final hash remains unaltered (Long, 2019). This

is a serious concern as the loss of the ability to validate that a hash came from a single input

undermines the ability to use the hashing algorithm. The loss of this property would then

disable the ability to compare hashes as two like hashes may have come from different

sources or enable malicious code to masquerade as benign code with the same hash sum. The

high rate of collisions in MD5 highlights a serious vulnerability (Mohammed Ali & Kadhim

Farhan, 2020), and from this, it is then easy for a security professional to understand the

deprecation of this algorithm (Obaida et al., 2022). While the MD5 function is no longer in

use, studying the function provides a greater understanding of hashing functions as a whole

and the security implications of hashing collisions.

When thinking of a common context in which hashing is regularly used such as password

storage or database lookups (Shen et al., 2022), it is clear to see the potential dangers of MD5

 9

collision exploits. If a password value is hashed but has several other inputs that could hash

to that same value, then the security of the password is greatly diminished. Likewise, when

searching a database through stored hash values, the hash values could be exploited to index

into unintended areas of the database. For this reason, security professionals working in an

environment where hash functions are used must understand the implications of their chosen

hash function and ensure that vulnerabilities of collisions are mitigated.

Conclusion:

Despite the security concerns involved with deprecated hash functions, hashing remains

an extremely relevant and useful form of modern cryptography (Microsoft, 2022).

Understanding the vulnerabilities associated with collision attacks then allows a security

professional to implement hash functions securely and address potential vulnerabilities

before they are exploited. Further, non-deprecated algorithms could be chosen or modified to

increase security and mitigate the risk of collisions (Alenezi et al., 2022). Growth in this

knowledge can then be gained through researching and exploring deprecated algorithms such

as MD5 or SHA1 and understanding the reasons why they are vulnerable to attack. Seeking

to understand these algorithms can then promote the principles of integrity and non-

repudiation through the secure application of hashing algorithms.

 10

References

Alenezi, M. N., Alabdulrazzaq, H., & Mohammad, N. Q. (2020). Symmetric encryption

algorithms: Review and evaluation study. International Journal of Communication

Networks and Information Security, 12(2), 256-272.

https://www.proquest.com/docview/2440677681?pq-

origsite=summon&accountid=12085

Amazon. (2023). AWS cryptography services: AWS cryptographic services and tools guide.

Amazon. https://docs.aws.amazon.com/pdfs/crypto/latest/userguide/crypto-

ug.pdf#concepts-algorithms

Basta, A. (2018). Oriyano, cryptography: Infosec pro guide. McGraw-Hill Education.

https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14

Microsoft. (March 11, 2022). Overview of encryption, digital signatures, and hash algorithms in

.NET. Microsoft. https://learn.microsoft.com/en-

us/dotnet/standard/security/cryptographic-services

Long, S. (2019). A comparative analysis of the application of hashing encryption algorithms for

MD5, SHA-1, and SHA-512. Journal of Physics. Conference Series, 1314(1),

12210. https://doi.org/10.1088/1742-6596/1314/1/012210

Mohammed Ali, A., & Kadhim Farhan, A. (2020). A novel improvement with an effective

expansion to enhance the MD5 hash function for verification of a secure E-

document. IEEE Access, 8, 80290-

80304. https://doi.org/10.1109/ACCESS.2020.2989050

Obaida, T. H., Salman, H. A., & Zugair, H. N. (2022). Improve MD5 hash function for document

authentication. Webology, 19(1), 7223-7234.

https://www.proquest.com/docview/2440677681?pq-origsite=summon&accountid=12085
https://www.proquest.com/docview/2440677681?pq-origsite=summon&accountid=12085
https://docs.aws.amazon.com/pdfs/crypto/latest/userguide/crypto-ug.pdf#concepts-algorithms
https://docs.aws.amazon.com/pdfs/crypto/latest/userguide/crypto-ug.pdf#concepts-algorithms
https://bookshelf.vitalsource.com/reader/books/9781307297003/pageid/14
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-services
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-services
https://doi.org/10.1088/1742-6596/1314/1/012210
https://doi.org/10.1109/ACCESS.2020.2989050

 11

https://www.proquest.com/docview/2692792776?accountid=12085&forcedol=true&forc

edol=true&pq-origsite=summon

Shen, Y., Wu, T., Wang, G., Dong, X., & Qian, H. (2022). Improved collision detection of MD5

using sufficient condition combination. The British Computer Society. Computer

Journal. https://doi.org/10.1093/comjnl/bxab109

https://www.proquest.com/docview/2692792776?accountid=12085&forcedol=true&forcedol=true&pq-origsite=summon
https://www.proquest.com/docview/2692792776?accountid=12085&forcedol=true&forcedol=true&pq-origsite=summon
https://doi.org/10.1093/comjnl/bxab109

 12

Screenshots: Task 1

Screenshot1: (Return to text)

Screenshot2: (Return to text)

 13

Screenshot3: (Return to text)

Screenshot4: (Return to text)

 14

Screenshot5: (Return to text)

Screenshot6: (Return to text)

 15

Screenshot7: (Return to text)

Screenshot8: (Return to text)

 16

Screenshot9: (Return to text)

Screenshot10: (Return to text)

 17

Screenshot11: (Return to text)

Screenshot12: (Return to text)

 18

Screenshot13: (Return to text)

Screenshot14: (Return to text)

 19

Screenshot15: (Return to text)

Screenshot16: (Return to text)

 20

Screenshots: Task 2

Screenshot17: (Return to text)

 21

Screenshots: Task 3

Screenshot18: (Return to text)

Screenshot19: (Return to text)

 22

Screenshot20: (Return to text)

Screenshot21: (Return to text)

 23

Screenshot22: (Return to text)

Screenshot23: (Return to text)

 24

Screenshot24: (Return to text)

Screenshot25: (Return to text)

 25

Screenshot26: (Return to text)

Screenshot27: (Return to text)

 26

Screenshot28: (Return to text)

Screenshot29: (Return to text)

 27

Screenshot30: (Return to text)

 28

Screenshots: Task 4

Screenshot31: (Return to text)

Screenshot32: (Return to text)

 29

Screenshot33: (Return to text)

Screenshot34: (Return to text)

 30

Screenshot35: (Return to text)

Screenshot36: (Return to text)

 31

Screenshot37: (Return to text)

Screenshot38: (Return to text)

	References

